

290

Ŵ

Wireless Infrastructure

Introduction to 5G Market Small Cells and mMIMO Base Stations

Q2 2022

Location, Markets and Expertise

Multi-technology semiconductor development

- III-V GaAs and GaN semiconductor technologies
- Silicon CMOS/SOI/SiGe integrated circuit design

● World-class OSAT partnerships

• Foundry, package, assembly, and test services

Multiple co-operation initiatives

- Co-operation with KU Leuven University, Belgium
- Small Cell Forum member, worked successfully on 5G FR1 reference design and now on C-V2X and Small cells

Wireless Infrastructure market of the future

• Rich ecosystem of multiple technologies and solutions.

- Macro and Small cells
- 4G/LTE
- 5G NR Sub-6 GHz
- 5G NR mmWave

⊙ Small cells will get more relevance with 5G

- Network densification
- Higher output capacity
- · Private networks and Neutral hosts

• Phased arrays will be widely adopted

Especially to solve the mmWave technical challenges

iCana delivers both III-V and Silicon component solutions for small cells and mMIMO.

Small Cells enable Mobile Network Operators to deploy sites in strategic locations offering smaller coverage with higher capacities, using licensed and unlicensed wireless spectrum.

5G FR1 Infrastructure

Product Overview – Small Cells and mMIMO RF Components

Infrastructure Products

Differential Amplifiers Interfacing Transceiver

- Single-to-Differential Amplifiers (S2D)
- Differential-to-Single Amplifiers (D2S)

Dual-Channel Receiver front-End Modules

• Rx-FEM

ICAN

High-Efficiency Power Amplifier Modules(PAM)

- 4W
- 8W
- 20W

5G FR1 Power Amplifier Modules for Small Cells

TDD block diagram

FDD block diagram

Peak Power PAM	Average Power PAM	Average Power Small Cell	Status
4W	28 dBm (0.65 W)	24 dBm (0.25 W)	Customer Samples
8W	31 dBm (1.25 W)	27 dBm (0.5 W)	Development
20W	34dBm (2.5 W)	30 dBm (1 W)	Development

• Key product features:

- 50 Ω in/out
- Multiple power levels to cover all range of small cells.
- High efficiency
- Excellent linearity ACLR
- Covers all most important 3GPP 5G NR bands
- Pin-to-pin family compatibility

5G FR1 4W RF PAM

Part Number	Frequency
ARQSP1819-4	1.8-1.9 GHz
ARQSP2122-4	2.1-2.2 GHz
ARQSP2324-4	2.3-2.4 GHz
ARQSP2527-4	2.5-2.7 GHz
ARQSP3336-4	3.3-3.6 GHz
ARQSP3742-4	3.7-4.2 GHz
ARQSP4450-4	4.4-5.0 GHz

• Key product features:

- 50 Ω in/out
- 5V operation (GaAs)
- 5x5 mm² package
- Pin-to-pin family compatible

5G FR1 Dual Rx FEM

Part Number	Frequency
ARQSF2442-RX-A	2.4-4.2 GHz
ARQSF3753-RX-A	3.7-5.3 GHz

• Key product line features:

- 2 driver stages with one bypass
- Excellent power handling
- Low insertion loss
- Fast switching time
- 6x6 mm² package

5G FR1 Switch

Part Number	Frequency
ARQSS1050-5T	1-5 GHz
ARQSS1050-4T	1-5 GHz

• Key product line features:

- Excellent Isolation
- High Linearity
- Low Insertion Loss
- Fast Switching Time
- 4x4 mm2 Package

SP5T

SP4T

ίςαηα

5G FR1 D2S/S2D Gain Differential Amplifier

O.

Part Number	Frequency
ARQSD1721-D2S	1.7-2.1 GHz
ARQSD2328-D2S	2.3-2.8 GHz
ARQSD3338-D2S	3.3-3.8 GHz
ARQSD4450-D2S	4.4-5.0 GHz

RFOUT

VDD

÷

PD

Part Number	Frequency
ARQSD1721-S2D	1.7-2.1 GHz
ARQSD2328-S2D	2.3-2.8 GHz
ARQSD3338-S2D	3.3-3.8 GHz
ARQSD4450-S2D	4.4-5.0 GHz

RFINP

RFINN

5G FR2 Infrastructure

5G FR2 Up/Down Converter (UDC)

- 1. ARQMU2429: supporting 3GPP 5G NR bands n257, n258 and n261
- 2. ARQMU3743: supporting 3GPP 5G NR bands n259 and n260

ICQN

• Key features:

- Wide RF frequency range
- Direct conversion and heterodyne conversion in single SoC
- Complex IF operation (IF mode) with optional on-chip hybrid
- DC-offset compensation for the I/Q baseband
- Image rejection and I/Q imbalance optimization
- Accurate phase correction control
- Accurate gain correction control
- Direct conversion of differential baseband I/Q (baseband mode)
- Programmable baseband I/Q common-mode voltage

Main function blocks for standard FR2 analog beamforming

5G FR2 BFIC

ICAN

- 1. ARQMB2629: supporting 3GPP 5G NR bands n257 and n261
- 2. ARQMB2427: supporting 3GPP 5G NR band n258
- 3. ARQMB3743: supporting 3GPP 5G NR bands n259 and n260

• Key features:

- 8 configurable transmit and receive channels
- Dual polarization, 4 horizontal and 4 vertical channels
- High linear output power
- Highest gain in industry in TX and RX
- Industry leading amplitude accuracy (0.05dB)
- Best-in-class Phase accuracy
- Supports best-in-class tapering and nulling performance
- AGC-functionality supported
- fast beam scanning
- Fully calibrated and full system calibration enablement

Main function blocks for standard FR2 analog beamforming

www.icana-rf.com